MARK SCHEME for the October/November 2015 series

0652 PHYSICAL SCIENCE

0652/32

Paper 3 (Extended Theory), maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2015 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is the registered trademark of Cambridge International Examinations.

Page 2		2	Mark Scheme	Syllabus	Pape	
			Cambridge IGCSE – October/November 2015	0652	32	
1	(a)	16	00 000 (N) ;			[1]
	(b)	(i)	(2000000 - 1600000 =) 400000 (N);			[1]
		(ii)	<u>Use of</u> (a = <i>F</i> / <i>m</i> =) 400 000/160 000 ; 2.5 ;		1 1	
			$m s^{-2}$;		1	[3]
	(c)	•	el burnt so) mass/weight decreases/gravity gets less/air resistand creases (as rocket rises) ;	ce		[1]
					[Tota	
2	(a)		lium chloride ; ic acid ;			
		ma	gnesium hydroxide / magnesium oxide / magnesium carbonate / gnesium bicarbonate / magnesium hydrogencarbonate ;			[3]
			g			[-]
	(b)		$Cl + Na_2CO_3 \rightarrow 2NaCl + H_2O + CO_2$ correct formulae ;			
			correct balancing of a correct equation ;			[2]
	(c)	am	photeric ;			[1]
	(d)	(i)	$H^+ + OH^- \rightarrow H_2O$; Ignore: spectator ions but must be correct ions and must balance			[1]
		(ii)	(hydroxide ion of sodium hydroxide)			
			accepts proton/hydrogen ion/H ⁺ ; (and so it is a base)			[1]
					[Tota	l: 8]
3	(a)	cor	oper best, iron worst ;		1	
-	()		ss better conductor than aluminium ;		1	[2]
	(b)	(i)	IR / infra-red / radiation ;			[1]
		(ii)	19–31 (inclusive) ;			[1]
		(iii)	black is a (better) absorber (of radiation than silver)/silver is a (bet reflector ;	tter)		[1]
					[Tota	

Page 3		3	Mark Scheme Syllabus			Paper	
	U		Cambridge IGCSE – October/November 2015	0652	32		
4	(a)	usir OR	cking ; ng a catalyst and reference to temperature ; <u>n</u> temperatures and reference to pressure ;		1 1	[2]	
	(b)		l bromine (water) ; <i>ane:</i> no change/red or orange colour remains D		1		
		eth	ene: decolourises (the bromine water) ;		1	[2]	
	(c)		lition ; /merisation ;		1 1	[2]	
	(d)	(ma	M ethene 28 or RFM ethanol 46 or 1:1 mole ratio identified ; iss ethanol =) 46/28 ; (kg) ;		1 1 1	[3]	
					[Tota	l: 9]	
5	(a)	ang	le of refraction correctly marked ;			[1]	
	(b)	ÔR	e) sin <i>i</i> /sin <i>r</i> sin 16/sin 11 ; 4(457) ;		1 1	[2]	
	(c)	(i)	Point marked, on line between centre of eye and beetle and further than beetle ;	r from lens		[1]	
		(ii)	upright ; enlarged ; virtual ;		1 1 1	[3]	
		[Total:					

Pa	age 4	4	Mark Scheme	Syllabus	Paper
			Cambridge IGCSE – October/November 2015	0652	32
6	(a)	(i)	(copper is) best/good (electrical) conductor ;		[1]
		(ii)	(aluminium is) lowest/low density ;		[1]
	(b)	(i)	makes it strong ;		[1]
		(ii)	<i>Any 4 from:</i> <i>For pure metal:</i> diagram and/or description of positive ions ; in sea of electrons ;		
			<i>For alloy:</i> ions of added metals different size to (aluminium ions) ; layers cannot slide/less easy to deform (lattice) ;		
			<i>In a pure metal:</i> layers can slide in a pure metal/or layers cannot slide as easily in a	in alloy ;	[4]
	(c)	(i)	(aluminium has protective/waterproof) oxide layer;		[1]
		(ii)	zinc is more reactive (than iron)/zinc reacts before iron ;		[1]
					[Total: 9]

Pa	age	5	Mark Scheme	Syllabus	Pape	er
			Cambridge IGCSE – October/November 2015	0652	32	
7	(a)	<u>circ</u>	ergy given or supplied (by the battery) OR (total) work done in (comp <u>cuit</u> ; unit charge ;	olete)	1 1	[2]
	(b)	(i)	<u>Use of</u> $(q = It) = 0.24 \times 5 \times 60$; 72; C or coulomb;		1 1 1	[3]
		(ii)	<u>Use of</u> ($E = Vq \text{ or } VIt$) = 4.8 × 72 ; 346 (J) ;		1 1	[2]
		(iii)	(battery emf – potential drop across resistor = $6.0 - 4.8 =$) 1.2 (V) ;		1	[1]
		(iv)	<u>Use of</u> $R = V/I$ (=1.2/0.24); 5.0 (Ω);		1 1	[2]
	(c)	(i)	either recognition that 2 × length leads to 2 × resistance OR $\frac{1}{2}$ × di leads to 4 × resistance ; (<i>r</i> = 5.0 × 2 × 4 =) 40.0 (Ω) ;	ameter	1 1	[2]
		(ii)	less ; good reason, example: current less thus <i>IR</i> less, larger share of voltage across (resistance	e) wire ;	1 1	[2]
					[Total:	14]
8	(a)	Qu	ncentration of) nitrogen oxides <u>and</u> carbon dioxide increased (with t <i>antitative interpretation comment</i> : e.g. percentage increase greater x than CO ₂ ;		1 1	[2]
	(b)		uce /stop increase (in nitrogen oxides) ; alytic converters change nitrogen oxide to nitrogen ;		1 1	[2]
	(c)	car leac car unt sulf	/ two from: bon monoxide ; d compounds ; bon particulates/soot ; burned hydrocarbons ; fur oxide(s) or dioxide or trioxide/SOx/SO ₂ /SO ₃ latile) organic compounds/VOC ;			[2]

age 6	ô	Mark Scheme	Syllabus	llabus Paper	
		Cambridge IGCSE – October/November 2015	0652	32	
(d)	100 2:10 (8.7	00/114 or 8.77 (moles of octane) ; 6 or 1:8 mole ratio ; 77 \times 8 = 70.2 moles 1 mole = 24 dm ³		1 1 1	[4]
				[Total	: 10]
(a)	(i)	deflection of the voltmeter needle/there is a reading on voltmeter/ induced ; *(needle) goes back again ;	emf	1 1	[2]
	(ii)	deflection in the opposite direction ;			[1]
	(iii)	larger deflection ;			[1]
	(iv)	deflection (as in (ii)) ;			[1]
(b)	OR field	magnetic field changes (when switch opened) ; d from primary coil links with secondary coil ;	oens);	1 1 1 [Tot a	[3] I I: 8]
(a)		U 1		1 1	[2]
(b)	bro chlo	wn colour/the same (as for bromine) ; prine displaces iodine/iodine displaced ;		[Tota	[2] II: 4]
	(d) (a) (a)	 100 2:10 (8.7 24 (a) (i) (ii) (iii) (iv) (b) curr OR field (cha (cha (b) Any bro chlo 	 Cambridge IGCSE – October/November 2015 (d) Evidence of 114 e.g. 12 × 8 + 18 (allow: 228); 1000/114 or 8.77 (moles of octane); 2:16 or 1:8 mole ratio; (8.77 × 8 = 70.2 moles 1 mole = 24 dm³ 24 × 70.) = 1684/1680; (a) (i) deflection of the voltmeter needle/there is a reading on voltmeter/ induced; *(needle) goes back again; (ii) deflection in the <u>opposite</u> direction; (iii) <u>larger</u> deflection; (iv) deflection (as in (ii)); (b) current (in primary coil) has magnetic field OR magnetic field changes (when switch opened); field from primary coil links with secondary coil; 	 Cambridge IGCSE - October/November 2015 0652 (d) Evidence of 114 e.g. 12 × 8 + 18 (allow: 228); 1000/114 or 8.77 (moles of octane); 2:16 or 1:8 mole ratio; (8.77 × 8 = 70.2 moles 1 mole = 24 dm³ 24 × 70.) = 1684/1680; (a) (i) deflection of the voltmeter needle/there is a reading on voltmeter/emf induced; *(needle) goes back again; (ii) deflection in the <u>opposite</u> direction; (iii) larger deflection; (iv) deflection (as in (ii)); (b) current (in primary coil) has magnetic field OR magnetic field changes (when switch opened); field from primary coil links with secondary coil; (changed magnetic field) produces a deflection (when switch initially opens); (a) melting point increases; colour becomes darker; (b) Any two from: brown colour/the same (as for bromine); chlorine displaces iodine/iodine displaced; 	Cambridge IGCSE - October/November 2015 0652 32 (d) Evidence of 114 e.g. 12 × 8 + 18 (allow: 228); 1000/114 or 8.77 (moles of octane); 2:16 or 1:8 mole ratio; (8.77 × 8 = 70.2 moles 1 mole = 24 dm³ 24 × 70.) = 1684/1680; 1 (a) (i) deflection of the voltmeter needle/there is a reading on voltmeter/emf induced; *(needle) goes back again; 1 (ii) deflection in the opposite direction; (iii) larger deflection; 1 (iii) deflection (as in (ii)); 1 (b) current (in primary coil) has magnetic field OR magnetic field changes (when switch opened); field from primary coil links with secondary coil; (changed magnetic field) produces a deflection (when switch initially opens); 1 (a) melting point increases; colour becomes darker; 1 (b) Any two from: brown colour/the same (as for bromine); chlorine displaces iodine/iodine displaced; 1